

Haferkamp 8 38667 Bad Harzburg

Anerkannte Prüfstelle nach RAP Stra 15 Fachgebiete A1, A3, BB3, BE3, D0, D3, E3, F3, G3, H1, H3, I1, I2, I3

Anerkannte Prüfstelle nach RAP Waha 07

Geschäftsführer:

Christoph Milnickel, B. Sc. Bau-Ing. Amtsgericht: Braunschweig HRB 209646

Telefon: 0 53 22 / 55 32 070 **Internet**: www.bl-harz.de E-Mail: info@bl-harz.de

Mitglied im Vero e. V. Mitglied im UVMB e. V.

BLH GmbH - Haferkamp 8 - 38667 Bad Harzburg

Mitteldeutsche Baustoffe GmbH Köthener Straße 13

06193 Petersberg OT Sennewitz

Prüfbericht nach den TL Gestein-StB 04/23

Werk: Ditfurt

Prüfbericht Nr.:	12-2201/10-24032	Prüfberichtdatum:	14.06.2024
Anschrift des Werkes:	MDB GmbH, Bode-Kieswerk Ditfurt	Überwachungszeitraum:	1. Halbjahr 2024
	an der L 66 in 06484 Ditfurt	Zulassungszeitraum:	2. Halbjahr 2024
Art der Güteüberwachung:	Freiwillige Güteüberwachung	Material:	Rundkorn
letzte Güteüberwachung:	12-2201/10-23105	Petrographischer Typ:	Bode-Sand-/Kies

Angaben über die Probenahme nach DIN EN 932-1:

Ort: Werk Ditfurt Datum: 18.04.2024 Teilnehmer: Hr. Kranich (MDB), Fr. Bivour (BLH) Witterung bewölkt, nass, +8°C

			Anwendun	gsbereich TL (Gestein-StB	
Nr.	Sorten-Nr.	Lieferkörnung [mm]	Entnahmestelle	Anhang F	Anhang G	Anhang E
	Oorton itii	Elororkornung [mm]	Entilaliniostono	Asphalt /	Beton /	SoB /
				EN 13043	EN 12620	EN 13242
	521 A			X		
1	521 B	0/2	0/2 Halde		Х	
	521 S					X
	507 A			X		
2	507 B	2/8	Halde		Х	
	507 S					Х
3	508 B	8/16	Halde		Х	
3	508 S	8/10	Tialue			X
4	509 B	16/22	Halde		Х	
4	509 S	16/32	паше			Х

Bemerkung: Auf die ZTV-StB LSBB ST 21 und das ARS Nr. 18/2018 des TLBV wird verwiesen.

vorgesehene Lieferbereiche: ST / TH

Verteiler: AG / ST [ST-005-K]

Der Prüfbericht umfasst -12- Seiten.

Sach- und Fachkundige für

- TRGS 519 Asbest TRGS 521 alte Mineralwolle TRGS 524 Arbeiten kont. Bereichen
- · Betriebsbeauftragte für Abfall

Labor und Ingenieurbüro für

- BödenGemische für SoB

- Beton
 Asphalt
 Gesteinskörnung
- Naturstein

	mm]			0/2		
Korngrößenverteilung DI	N EN 933-1	Siebdurch	gang [%]			
Siebgröße [mm]		0.0000.0.1	Σ			
< 1,25		2,7	3			
1,25 - 0,25		7,1	10			
0,25 - 0,5		18,9	29			
0,5 - 1,0		29,0	58			
1,0 - 1,4		16,0	74			
1,4 - 2,0		17,1	91			
2,0 - 2,8		8,4	99			
2,8 - 4,0		0,6	100			
				res. Kate	gorie Anwendu	ngsbereich
Kennwert		SOLL	IST	Asphalt	Beton	SoB
				(EN 13043)	(EN 12620)	(EN 13242)
		≤ 3	1,1	f ₃	f ₃	f ₃
		≤ 3	1,1	f ₃	f ₃	f ₃
Überkorn		≤3	1,1	f ₃	f ₃	f ₃
	[mm]	≤ 3		f ₃	f ₃	f ₃
bis Korngröße D	[mm] [M%]			f ₃	f ₃	f ₃
bis Korngröße D Grenzwert		2,0	91			
bis Korngröße D Grenzwert bis Korngröße 1,4D	[M%]	2,0	91	f ₃	f ₃ G _F 85	f ₃ G _F 85
bis Korngröße D Grenzwert bis Korngröße 1,4D Grenzwert	[M%] [mm]	2,0 85-99 2,8	9 1 3			
bis Korngröße D Grenzwert bis Korngröße 1,4D Grenzwert bis Korngröße 2D	[M%] [mm] [M%]	2,0 85-99 2,8 98-100 ¹⁾	9 1 3			
bis Korngröße D Grenzwert bis Korngröße 1,4D Grenzwert bis Korngröße 2D Grenzwert	[M%] [mm] [M%] [mm]	2,(85-99 2,8 98-100 ¹⁾ 4,0	91 3 99			
Überkorn bis Korngröße D Grenzwert bis Korngröße 1,4D Grenzwert bis Korngröße 2D Grenzwert werkstypische Toleranz bis Korngröße	[M%] [mm] [M%] [mm]	2,(85-99 2,8 98-100 ¹⁾ 4,0	91 3 99 0			
bis Korngröße D Grenzwert bis Korngröße 1,4D Grenzwert bis Korngröße 2D Grenzwert werkstypische Toleranz bis Korngröße	[M%] [mm] [M%] [mm] [M%]	2,0 85-99 2,8 98-100 ¹⁾ 4,0 100 0,00	91 3 99 100			
bis Korngröße D Grenzwert bis Korngröße 1,4D Grenzwert bis Korngröße 2D Grenzwert werkstypische Toleranz bis Korngröße Grenzwert	[M%] [mm] [M%] [mm] [M%]	2,0 85-99 2,8 98-100 ¹⁾ 4,0 100	91 3 99 100			
bis Korngröße D Grenzwert bis Korngröße 1,4D Grenzwert bis Korngröße 2D Grenzwert werkstypische Toleranz bis Korngröße Grenzwert	[M%] [mm] [M%] [mm] [M%]	2,(85-99 2,8 98-100 ¹⁾ 4,(100 0,06 0-3 0,28	91 3 99 0 100 63 1 5 ²	G _F 85		G _F 85
bis Korngröße D Grenzwert bis Korngröße 1,4D Grenzwert bis Korngröße 2D Grenzwert werkstypische Toleranz bis Korngröße Grenzwert bis Korngröße Grenzwert bis Korngröße	[M%] [mm] [M%] [mm] [M%]	2,(85-99 2,8 98-100 ¹⁾ 4,(100 0,06 0-3	91 3 99 0 100 63 1 5 ²			
bis Korngröße D Grenzwert bis Korngröße 1,4D Grenzwert bis Korngröße 2D Grenzwert werkstypische Toleranz	[M%] [mm] [M%] [mm] [M%] [mm] [M%]	2,(85-99 2,8 98-100 ¹⁾ 4,(100 0,06 0-3 0,28	91 3 99 0 100 63 1 5 ²	G _F 85		G _F 85
bis Korngröße D Grenzwert bis Korngröße 1,4D Grenzwert bis Korngröße 2D Grenzwert werkstypische Toleranz bis Korngröße Grenzwert bis Korngröße Grenzwert bis Korngröße Grenzwert	[M%] [mm] [M%] [mm] [M%] [mm] [M%] [mm] [M%] [mm] [mm]	2,0 85-99 2,8 98-100 ¹⁾ 4,0 100 0,00 0-3 0,28 0-35 1 ³	91 3 99 100 63 1 5 ² 10	G _F 85		G _F 85

Anwendungsbereich: AC T, AC TD, AC B, AC D, Beton (O, U, BTS), SoB

 $^{^{1)}}$ Anforderung nur für Anwendungsbereiche Beton: 1,4D: 95-100 M.-% und SoB: 1,4D: 98-100 M.-%

 $^{^{2)}}$ Anforderung nur für Anwendungsbereich Beton

 $^{^{3)}}$ Anforderung für Anwendungsbereich Beton: 1 mm: 40-80 M.-% werkstypische Zusammensetzung: 0,063 mm: 0,2 M.-% / 0,25 mm: 10 M.-% / 1,0 mm: 60 M.-% / 2,0 mm: 92 M.-%

Gesteinskörnung (d/D)	[mm]			2/8		
Korngrößenverteilung	DIN FN 933-1	Siebdurchg	ang [%]			
Siebgröße [mm]		Clobadione	Σ			
< 1,0		0,7	1			
1,0 - 2,0		7,0	8			
2,0 - 4,0		35,1	43			
4,0 - 5,6		27,7	70			
5,6 - 8,0		24,2	95			
8,0 - 11,2		5,4	100			
11,2 - 16,0		0,0	100			
				res. Kate	gorie Anwendu	ngsbereich
Kennwert		SOLL	IST	Asphalt	Beton	SoB
				(EN 13043)	(EN 12620)	(EN 13242)
Gehalt an Feinanteilen	(≤ 0,063 mm)	≤2		f _{0,5}		
		≤ 1	0,1		f _{0,5}	_
		≤ 4				f _{0,5}
Unterkorn					1	I
bis Korngröße d/2	[mm]	1,0		_		
Grenzwert	[M%]	0-5	1	_		
bis Korngröße d	[mm]	2,0		_		
Grenzwert	[M%]	0-15 ¹⁾	8	-		
Überkorn				0.00/45	0.05/20	0.00.00
bis Korngröße D	[mm]	8,0		G _c 90/15	G _c 85/20	G _c 80/20
Grenzwert	[M%]	90-99 ²⁾	95	_		
bis Korngröße 1,4D	[mm]	98-100		_		
Grenzwert	. ,		100	_		
bis Korngröße 2D	[mm]	16,		-		
Grenzwert	[M%]	100	100			
Zwischensiebanforderu bis Korngröße		4,0)			
Grenzwert	[mm]	20-70	43	-		
Toleranz	[M%]	2010	70	G _{20/17,5}	_	_
bis Korngröße	[mm]	4,0)	→20/17,5		
Grenzwert	[M%]	40±17,5	43	-		
GI OTIZITOI C	[141. 70]	10_11,0	-10		<u> </u>	<u> </u>
weitere Kennwerte						
Kornformkennzahl	[DIN EN 933-4]	≤ 50		SI ₅₀		
Prüfdatum	2. HJ 2023	≤ 50	23		SI ₅₀	
		≤ 55				SI ₅₀
Plattigkeitskennzahl	[DIN EN 933-3]	≤ 50		FI ₅₀		
Prüfdatum	1. HJ 2024	≤ 50	26		FI ₅₀	
		≤ 50				FI ₅₀
Muschelschalengehalt	[DIN EN 933-7]	Prüfung nicht	orfordorlich	-	-	_

Anwendungsbereich: AC T, AC TD, Beton (U, BTS), SoB

 $^{^{1)}}$ Anforderung für Anwendungsbereiche Beton und SoB: d: 0-20 M.- $\!\%$

 $^{^{2)}}$ Anforderung für Anwendungsbereiche Beton: D: 85-99 M.-% und SoB: D: 80-99 M.-%

 $^{^{3)}\,}$ nur für Anwendungsbereich Asphalt werkstypische Zusammensetzung: 2,0 mm: 5 M.-% / 4,0 mm: 40 M.-%

7	[mm]			8/16		
Korngrößenverteilung [DIN EN 933-1	Siebdurchg	gang [%]			
Siebgröße [mm]			Σ			
< 4,0		0,1	0			
4,0 - 5,6		0,1	0			
5,6 - 8,0		1,8	2			
8,0 - 11,2		18,0	20			
11,2 - 16,0		67,2	87			
16,0 - 22,4		12,8	100			
22,4 - 31,5		0,0	100			
				res. Kate	gorie Anwendu	ngsbereich
Kennwert		SOLL	IST	Asphalt (EN 13043)	Beton (EN 12620)	SoB (EN 13242)
		≤ 1 ≤ 4	0,0		f _{0,5}	f _{0.5}
		≤ 4				f _{0,5}
Unterkorn						I
bis Korngröße d/2	[mm]	4,0		_		
Grenzwert	[M%]	0-5	0	_		
bis Korngröße d	[mm]	8,0		_		
Grenzwert	[M%]	0-20	2	_		
n						
			_	_	0.05/00	
bis Korngröße D	[mm]	16,			G _c 85/20	G _c 80/20
bis Korngröße D Grenzwert	[M%]	85-99 ¹⁾	87		G _c 85/20	G _c 80/20
bis Korngröße D Grenzwert bis Korngröße 1,4D	[M%] [mm]	85-99 ¹⁾ 22,	87		G _c 85/20	G _c 80/20
Überkorn bis Korngröße D Grenzwert bis Korngröße 1,4D Grenzwert	[M%] [mm] [M%]	85-99 ¹⁾ 22, 98-100	87 4 100		G _c 85/20	G _c 80/20
bis Korngröße D Grenzwert bis Korngröße 1,4D Grenzwert bis Korngröße 2D	[M%] [mm] [M%] [mm]	85-99 ¹⁾ 22, 98-100 31,	87 4 100 5		G _c 85/20	G _c 80/20
bis Korngröße D Grenzwert bis Korngröße 1,4D Grenzwert	[M%] [mm] [M%]	85-99 ¹⁾ 22, 98-100	87 4 100		G _c 85/20	G _c 80/20
bis Korngröße D Grenzwert bis Korngröße 1,4D Grenzwert bis Korngröße 2D Grenzwert	[M%] [mm] [M%] [mm] [M%]	85-99 ¹⁾ 22, 98-100 31,	87 4 100 5		G _c 85/20	G _c 80/20
bis Korngröße D Grenzwert bis Korngröße 1,4D Grenzwert bis Korngröße 2D Grenzwert	[M%] [mm] [M%] [mm]	85-99 ¹⁾ 22, 98-100 31, 100	87 4 100 5 100			G _c 80/20
bis Korngröße D Grenzwert bis Korngröße 1,4D Grenzwert bis Korngröße 2D Grenzwert weitere Kennwerte Kornformkennzahl	[M%] [mm] [M%] [mm] [M%]	85-99 ¹⁾ 22, 98-100 31, 100 ≤ 50	87 4 100 5		G _c 85/20	
bis Korngröße D Grenzwert bis Korngröße 1,4D Grenzwert bis Korngröße 2D Grenzwert weitere Kennwerte Kornformkennzahl Prüfdatum	[M%] [mm] [M%] [mm] [M%]	85-99 ¹⁾ 22, 98-100 31, 100	87 4 100 5 100			G _c 80/20
bis Korngröße D Grenzwert bis Korngröße 1,4D Grenzwert bis Korngröße 2D Grenzwert weitere Kennwerte Kornformkennzahl Prüfdatum	[M%] [mm] [M%] [mm] [M%]	85-99 ¹⁾ 22, 98-100 31, 100 ≤ 50 ≤ 55	87 4 100 5 100		SI ₅₀	
bis Korngröße D Grenzwert bis Korngröße 1,4D Grenzwert bis Korngröße 2D	[M%] [mm] [M%] [mm] [M%]	85-99 ¹⁾ 22, 98-100 31, 100 ≤ 50	87 4 100 5 100			

Anwendungsbereich: Beton (U, BTS), SoB

 $^{^{1)}}$ Anforderung für Anwendungsbereich SoB: D: 80-99 M.-%

	[mm]			16/32		
Korngrößenverteilung	DIN EN 933-1	Siebdurch	gang [%]			
Siebgröße [mm]			Σ			
< 8,0		0,2	0			
8,0 - 11,2		0,0	0			
11,2 - 16,0		1,1	1			
16,0 - 22,4		25,7	27			
22,4 - 31,5		65,0	92			
31,5 - 45,0		8,0	100			
45,0 - 56,0		0,0	100			
56,0 - 63,0		0,0	100			
				roo Koto	dorio Anusandu	un dah ayai ah
Kennwert		6011	IST		gorie Anwendu	
Veillimetr		SOLL	131	Asphalt (EN 13043)	SoB (EN 13242)	Beton
				(EN 13043)	(EN 13242)	(EN 12620)
		≤ 4				f _{0,5}
Unterkorn		≤ 4				f _{0,5}
Unterkorn bis Korngröße d/2	[mm]	≤ 4 8,	0			f _{0,5}
	[mm] [M%]		0			f _{0,5}
bis Korngröße d/2		8,	0			f _{0,5}
bis Korngröße d/2 Grenzwert	[M%]	8, 0-5	0			f _{0,5}
bis Korngröße d/2 Grenzwert bis Korngröße d	[M%] [mm]	8, 0-5 16	0 ,0			f _{0,5}
bis Korngröße d/2 Grenzwert bis Korngröße d Grenzwert	[M%] [mm]	8, 0-5 16 0-20	0 ,0 1		G _c 85/20	f _{0,5}
bis Korngröße d/2 Grenzwert bis Korngröße d Grenzwert Überkorn	[M%] [mm] [M%]	8, 0-5 16 0-20	0 ,0 1		G _c 85/20	
bis Korngröße d/2 Grenzwert bis Korngröße d Grenzwert Überkorn bis Korngröße D	[M%] [mm] [M%]	8, 0-5 16 0-20	,0 1 ,5 92		G _c 85/20	
bis Korngröße d/2 Grenzwert bis Korngröße d Grenzwert Überkorn bis Korngröße D Grenzwert bis Korngröße 1,4D Grenzwert	[M%] [mm] [M%]	8, 0-5 16 0-20 31 85-99 ¹⁾	,0 1 ,5 92		G _c 85/20	
bis Korngröße d/2 Grenzwert bis Korngröße d Grenzwert Überkorn bis Korngröße D Grenzwert bis Korngröße 1,4D	[M%] [mm] [M%] [mm] [M%] [mm]	8, 0-5 16 0-20 31 85-99 ¹⁾	,0 ,0 ,5 ,5 ,92 ,0		G _c 85/20	
bis Korngröße d/2 Grenzwert bis Korngröße d Grenzwert Überkorn bis Korngröße D Grenzwert bis Korngröße 1,4D Grenzwert	[M%] [mm] [M%] [mm] [M%] [mm] [M%]	8, 0-5 16 0-20 31 85-99 ¹⁾ 45 98-100	,0 ,0 ,5 ,5 ,92 ,0		G _c 85/20	
bis Korngröße d/2 Grenzwert bis Korngröße d Grenzwert Überkorn bis Korngröße D Grenzwert bis Korngröße 1,4D Grenzwert bis Korngröße 2D Grenzwert	[M%] [mm] [M%] [mm] [M%] [mm] [M%] [mm]	8, 0-5 16 0-20 31 85-99 ¹⁾ 45 98-100 63	,0 ,5 ,92 ,0 ,0		G _c 85/20	
bis Korngröße d/2 Grenzwert bis Korngröße d Grenzwert Überkorn bis Korngröße D Grenzwert bis Korngröße 1,4D Grenzwert bis Korngröße 2D	[M%] [mm] [M%] [mm] [M%] [mm] [M%] [mm]	8, 0-5 16 0-20 31 85-99 ¹⁾ 45 98-100 63	,0 ,5 ,92 ,0 ,0		G _c 85/20	
bis Korngröße d/2 Grenzwert bis Korngröße d Grenzwert Überkorn bis Korngröße D Grenzwert bis Korngröße 1,4D Grenzwert bis Korngröße 2D Grenzwert	[M%] [mm] [M%] [mm] [M%] [mm] [M%] [mm] [M%]	8, 0-5 16 0-20 31 85-99 ¹⁾ 45 98-100 63	,0 ,5 ,92 ,0 ,0			
bis Korngröße d/2 Grenzwert bis Korngröße d Grenzwert Überkorn bis Korngröße D Grenzwert bis Korngröße 1,4D Grenzwert bis Korngröße 2D Grenzwert weitere Kennwerte Kornformkennzahl	[M%] [mm] [M%] [mm] [M%] [mm] [M%] [mm] [M%]	8, 0-5 16 0-20 31 85-99 ¹⁾ 45 98-100 63 100	0 ,0 1 ,5 92 ,0 100 ,0		G _c 85/20	G _c 80/20
bis Korngröße d/2 Grenzwert bis Korngröße d Grenzwert Überkorn bis Korngröße D Grenzwert bis Korngröße 1,4D Grenzwert bis Korngröße 2D Grenzwert weitere Kennwerte Kornformkennzahl Prüfdatum	[M%] [mm] [M%] [mm] [M%] [mm] [M%] [mm] [M%]	8, 0-5 16 0-20 31 85-99 ¹⁾ 45 98-100 63 100	0 ,0 1 ,5 92 ,0 100 ,0			
bis Korngröße d/2 Grenzwert bis Korngröße d Grenzwert Überkorn bis Korngröße D Grenzwert bis Korngröße 1,4D Grenzwert bis Korngröße 2D Grenzwert weitere Kennwerte Kornformkennzahl	[M%] [mm] [M%] [mm] [M%] [mm] [M%] [mm] [M%]	8, 0-5 16 0-20 31 85-99 ¹⁾ 45 98-100 63 100	0 ,0 1 ,5 92 ,0 100 ,0		Si ₅₀	G _c 80/20
bis Korngröße d/2 Grenzwert bis Korngröße d Grenzwert Überkorn bis Korngröße D Grenzwert bis Korngröße 1,4D Grenzwert bis Korngröße 2D Grenzwert weitere Kennwerte Kornformkennzahl Prüfdatum	[M%] [mm] [M%] [mm] [M%] [mm] [M%] [mm] [M%] [DIN EN 933-4] 2. HJ 2023	8, 0-5 16 0-20 31 85-99 ¹⁾ 45 98-100 63 100 ≤ 50 ≤ 55	0 ,0 1 ,5 92 ,0 100 ,0			G _c 80/20

Anwendungsbereich: Beton (U, BTS), SoB

 $^{^{1)}}$ Anforderung für Anwendungsbereich SoB: D: 80-99 M.-%

04-						IST /	res. Kateg	orie
	Gesteins- körnung ¹⁾ / Probenahme	Prüfkörnung	Einzelwerte	Ist- Wert	SOLL	Anwendungsbereich		
1		[mm]	Ellizeiwerte		JULL	Asphalt	Beton	SoB
FIUDGII	iiiiie					(EN 13043)	(EN 12620)	(EN 13242)

 $^{^{(1)}}$ Gesteinskörnungen (Gk): fGk feine GK / gGk grobe Gk / gGk \leq 32 mm: Splitt /gGk > 32 mm: Schotter

Stoffliche Kennzeichnung

Petrographische Beschreibung DIN EN 932-3

	-
--	---

Die Gewinnung der Sand-Kies-Lagerstätte erfolgt im Nassabbau. Aus folgenden Hauptkomponenten setzt sich der Kiesanteil zusammen:

ca. 56 M.-% paläozoische Sedimente

ca. 11 M.-% Kristallin

ca. 11 M.-% Grauwacke

ca. 8 M.-% Kieselschiefer

ca. 8 M.-% Quarz, Quarzit

ca. 2 M.-% Rhyolith

Geometrische Eigenschaften

Bestimmung der Kantigkeit - Fließkoeffizient DIN EN 933-6

[e]	fGk 0/2	0.063/2	34,6 / 34,6 / 34,7 / 34,7 / 34,7	i.M.	35	E _{cs} 35	E _{cs} 35	E. 35	
[၁]	04/2024	0,003/2	Rohdichte ρ_p = 2,69 Mg/m ³	1.101.	33	ECSOO	ECSOO	Ecsoo	

Physikalische Eigenschaften

Rohdichte ρ_n DIN EN 1097-6, Anhang A

		onarone pp Dividir 2001 0,74 mang/t										
	[Mg/m³]	0/2	0.063/2	2,707 / 2,706	i.M.	2,71	ist	2,71				
	[IVIB/III-]	10/2023	0,003/2	2,707 / 2,700	1.171.	2,11	anzugeben	2,11				
	[Mg/m³]	2/8	4/8	2,723 / 2,726	i.M.	2,72	ist	2,72				
		10/2023	7,0	2,123 / 2,120	1.141.	2,12	anzugeben	2,12				
	[Mg/m³]	8/16	9/16	8/16	8/16	8/16	8/16	2,737 / 2,730	i.M.	2.73	ist	2,73
	[IVI6/III]	10/2023	0/10	2,131 / 2,130	1.171.	2,73	anzugeben	2,10				
	[Mg/m³]	16/32	16/31,5	2,715 / 2,722	i.M.	2,72	ist	2,72				
	[14,8/11]	10/2023	10, 31,3	2,110/2,122	1.171.	2,12	anzugeben	2,12				

Wasseraufnahme WA_{cm} DIN EN 1097-6

[%]	0/2	0,063/2	0.063/2	0,9 / 0,9	i.M.	0,9	/*	
[70]	10/2023		0,9 / 0,9	1.101.	0,9	/ "		
[%]	2/8	1/8	1,7 / 1,8	i.M.	1,7	/*		
[70]	10/2023	4/8	1,1 / 1,0	1.101.	Δ, ι	/		
[%]	8/16	8/16	1,2 / 1,2	i.M.	1,2	/*		
[/0]	10/2023	6/10	1,2 / 1,2	1.101.	1,2	/		
[%]	16/32	16/21 5	16/32	i.M.	0.0	/*		
[/0]	10/2023	16/31,5	0,8 / 0,9	1.101.	0,8	/ "		

^{*} Nachweis der Frostbeständigkeit erfolgt über direkte Bestimmung des Widerstandes gegen Frost nach DIN EN 1367-1 (s. S. 7)

Kennwertangabe informativ

Gesteins-					IST / res. Kategorie		
körnung	Prüfkörnung Einzelwerte	Ist-	SOLL	Anwendungsbereich			
[mm] /	[mm]	We	Wert	JULL	Asphalt	Beton	SoB
Probenahme					(EN 13043)	(EN 12620)	(EN 13242)

Physikalische Eigenschaften

Widerstand gegen Zertrümmerung (Schlagzertrümmerungswert) DIN EN 1097-2, Abs. 6

[M%]	gGk ≤ 32 mm	9/12 F	19,43	20,47	20,77	i M	20.2	67	\$7	67	\$7	
	[14170]	10/2023	8/12,5	Rohdichte ρ _p = 3	2,71 Mg/m³ / Korr	nform = 29 M%	I.IVI.	20,2	3Z ₃₅	3L ₂₂	3L ₂₂	3L ₂₂

Widerstand gegen Zertrümmerung (Los Angeles-Koeffizient) DIN EN 1097-2, Abs. 5

Widerstand gegen Frostbeanspruchung DIN EN 1367-1

[M%]	gGk ≤ 32 mm	8/16	0,4	0,9	1,3	i M	0.0	F.*	E.	E.	E.
[14170]	10/2023	0/10	Prüf	flüssigkeit: Wa	sser	1.101.	0,9	'1	'1	'1	'1

^{*} Anforderung für Anwendungsbereich Beton: F_2 und SoB: F_4

Widerstand gegen Frost-Tausalz-Beanspruchung DIN EN 1367-6

[M%]	gGk ≤ 32 mm	9/16	3,9	3,2	4,8	i N/I	4.0	≤8	< 5	< 5	
[14170]	10/2023	0/10	Prüfflüssig	gkeit: 1%ige Na	aCl-Lösung	I.IVI.	4,0	≤5*	33		

^{*} ab Frosteinwirkungszone III nach RStO

Magnesiumsulfatwert DIN EN 1367-2

[M%]	gGk ≤ 32 mm	10/14	10.4 / 12.6	: 1.4	12	MC	MC	
[1VI%]	10/2023	10/14	12,4/13,6	I.IVI.	13	MS _{NR}	1VIS ₁₈	

Kennwertangabe informativ

Widerstand gegen Hitzebeanspruchung DIN EN 1367-5 Unterkorn (I) durch Hitzebeanspruchung

[M%]	gGk ≤ 32 mm	8/16	0,4 / 0,4 / 0,4	i.M.	0,4	≤3	0,5	
	10/2023							

Festigkeit bei Hitzebeanspruchung DIN EN 1367-5 / DIN EN 1097-2

	gGk ≤ 32 mm	8/12,5 SZ ₂	21,35	21,88	20,22	i.M.	21,1			
[M%]	10/2023	8/12,5 SZ ₁	19,43	20,47	20,77	i.M.	20,2	V _{SZ} ≤ 5 0,9		
	10/2023		Festig	keitsverlust \	$V_{SZ} = SZ_2 - SZ$	1	0,9			

Affinität zwischen groben Gesteinskörnungen und Bitumen DIN EN 12697-11

ľ	[%]	gGk ≤ 32 mm	9/11 2	Bindemittel-umhüllte Fläche nach 6 Stunden	90	ist	90	
	[%]	10/2023	0/11,2	Bindemittel-umhüllte Fläche nach 24 Stunden	75	anzugeben	30	

Bitumensorte: 50/70, Additive: keine

	Gesteins-					IST ,	/ res. Kateg	orie
	körnung	Prüfkörnung	Einzelwerte	lst-	SOLL	Anw	endungsber	eich
	[mm] /	[mm]	Lilizeiweite	Wert	JULL	Asphalt	Beton	SoB
ı	Probenahme					(EN 13043)	(EN 12620)	(EN 13242)

Physikalische Eigenschaften

Gehalt an groben organischen Verunreinigungen DIN EN 1744-1, Abs. 14.2

3-3-3-1 - 3-3-3-1 - 3-										
[%]	0/2	0/2	0.00	0.00	m _{LPC} 0,10*	m _{I PC} 0,10	m _{LPC} 0,10			
[70]	04/2024	0/2	0,00	0,00	пп[рсо,то	III_pco,±0	шгьсо, 20			
* Anforderun	g für Anwendung	sbereich Beton: r	n _{LPC} 0,25 M%							
F9/ 1	2/8	2/8	0.00	0.00	m _{LPC} 0,05*	m _{LPC} 0,05	m _{LPC} 0,05			
[%]	04/2024	2/6	2/8 0,00	0,00	Пірсо,оз	персо,оо	IIILPCO,OS			
[%]	8/16	8/16	0.00	0.00	m _{LPC} 0,05*	m _{LPC} 0,05	m 0.05			
[/0]	04/2024	6/10	0,00	0,00	III _{LPC} O,OO	III _{LPC} U,U3	m _{LPC} 0,05			
[%] 16/3	16/32	16/31,5	0.00	0.00	m _{LPC} 0,05*	m _{LPC} 0,05	m _{LPC} 0,05			
[/0]	[%] 04/2024 16/3	10/31,3	0,00	0,00	IIILPCO,OO	IIILPCU,US	III _{LPC} O,OS			

^{*} Anforderung für Anwendungsbereich Asphalt: m_{LPC}0,10 M.-%

Vorhandensein von Huminsäure DIN EN 1744-1, Abs. 15.1

[-]	0/2	0/2	heller als Farbbezugslösung (farblos)	ja	ist anzugeben	heller als Bezugslag.	
[-]	2/8 04/2024	2/4	heller als Farbbezugslösung (farblos)	ja	ist anzugeben	heller als Bezugslsg.	

Chemische Eigenschaften

Gehalt an wasserlöslichem Chlorid DIN EN 1744-1, Abs. 7

[M%] fGk 0/2 10/2022	fGk 0/2	0/2	< 0.001	< 0.001	≤ 0.04	< 0.04	
	0/2	0,001	0,001	3 0,04	\ 0,04		
[M%]	gGk ≤ 32 mm	8/16	< 0.001	< 0.001	≤ 0.04	< 0.04	
[1V170]	10/2022	0/10	< 0,001	< 0,001	≥ 0,04	< 0,04	

Bestimmung über Fremdvergabe Eurofins Umwelt Ost GmbH, Freiberg

Gehalt an säurelöslichem Sulfat DIN EN 1744-1, Abs. 12

[M%]	fGk 0/2	0/2	< 0,1	< 0.1	≤ 0.8	AS _{0,2}	
[14170]	10/2023	0/2	₹ 0,1	\ 0,1	≥ 0,0	A3 _{0,2}	
[M%]	gGk ≤ 32 mm	8/16	< 0.1	< 0.1	<0°	AC	
[10170]	10/2023	0/10	< 0,1	V 0,1	≤ 0,8	AS _{0,2}	

Bestimmung über Fremdvergabe AWV-Dr. Busse GmbH, Plauen

Gesamtschwefelgehalt DIN EN 1744-1, Abs. 11

[M%]	fGk 0/2	0/2	< 0,1	< 0.1	< 1	< 1	
[1V170]	10/2023	0/2	₹ 0,1	\ 0,1	>1	31	
[M%]	gGk ≤ 32 mm	8/16	0.17	0.17	<i>~</i> 1	- 1	
[1V170]	10/2023	0/10	0,17	0,17	≥ 1	71	

Bestimmung über Fremdvergabe AWV-Dr. Busse GmbH, Plauen

Calciumcarbonatgehalt DIN EN 196-2

	_					
	fGk 0/2		Calcium als CaO	1,0		1,0
[M%]	10/2023	0/2	CO ₂ aus Calciumoxid	0,8	/	0,8
	10/2023		CaCO ₃ berechnet (CO ₂ x Faktor 2,2742)	1,8		1,8

Gesteins-					IST ,	/ res. Kateg	orie
körnung	Prüfkörnung	Einzelwerte	lst-	SOLL	Anw	endungsber	eich
[mm] /	[mm]	Emzerwerte	Wert	JULL	Asphalt	Beton	SoB
Probenahme					(EN 13043)	(EN 12620)	(EN 13242)

Chemische Eigenschaften

Beurteilung der Alkaliempfindlichkeit DAfStb-Richtlinie

[-]	gGk ≤ 32 mm	1/2-16/32	siehe Seite 10	ist anzugeben	E I-0 / E I-0F	
	htlinie Vorbeu		hmen gegen schädigende Alkalireaktion im Beton (, rgebnisse sind die Gesteinskörnungen in die Alkalie			inzustufen.
[-]	gGk ≤ 32 mm 10/2023	2/22,4		ist anzugeben	E I-S	

DAfStb-Richtlinie, Anhang B (freiwillige Untersuchung) Schnellprüfverfahren an groben Gesteinskörnungen:

2/8 + 8/16 + 16/32 mm: **1,37 mm/m** Dehnung (SOLL lt. EP \leq 1,56 mm/m)

(Kennwertübernahme aus Ifd. Produktprüfung Nr. 10-23105/SPV)

Hinweis: Beim Einsatz in Fahrbahndeckenbeton ist das ARS Nr. 04/2013 vom 22.01.2013 "Vermeidung von Schäden an Fahrbahndecken aus Beton in Folge von Alkali-Kieselsäure-Reaktion (AKR)" zu berücksichtigen.

Baustofflabor Harz GmbH Prüfbericht Nr. 12-2201/10-24032 vom 14.06.2024

Seite 10

Untersuchung von Gesteinskörnungen auf alkaliempfindliche Bestandteile

gemäß DAfStb-Richtlinie "Vorbeugende Maßnahmen gegen schädigende Alkalireaktion im Beton"

1. Hersteller: siehe Seite 1

2. Probenahme (Abschnitt A.3): siehe Seite 1

3. Korngrößenverteilung (Abschnitte A.4.2 und A.4.3): siehe Seiten 2-5

4. Petrographische Prüfung (Abschnitt A.5.3)

Prüfkornklasse		mm	4/8	8/16	16/32
Einwaage	G_{PE}	g	401,6	3001,5	5003,6
Alkaliunempfindliche Bestandteile	$W_{PU} = (G_{PU}/G_{PE}) \times 100$	M%	98,0	97,9	98,2
Flint	$W_{PF} = (G_{PF}/G_{PE}) \times 100$	M%	1,9	1,9	1,8
Opalsandstein einschl. Kiesel-	$W_{PO} = (G_{PO}/G_{PF}) \times 100$	M%	0.1	0.2	0.0
kreide und fragliche Bestandteile	$W_{PO} = (G_{PO}/G_{PE}) \times 100$	IVI70	0,1	0,2	0,0

5. Prüfung des Anteils an alkaliempfindlichen Bestandteilen (Abschnitte A.6.3 und A.7.3)

Prüfkornklasse		mm	1/2	2/4	4/8	8/16	16/32
Einwaage	G _{NE} oder G _{PO}	g	400,0	400,0			
Masse nach NaOH-Test (abzgl. G _{NW})	G _{NV}	g	397,9	398,4			
Opalsandstein und reaktionsfähiger Flint	$w_{0\le}4 = ((G_{NE}-G_{NV})/G_{NE}) \times 100$	M%	0,5	0,4			
Opalsandstein	$w_{0>}4 = ((G_{PO}-G_{NV})/G_{PE}) \times 100$	M%					
erweichte	G _{NW}	g					
Körner	$W_{NW} = (G_{NW}/G_{PE}) \times 100$	M%					
Flintrohdichte	$ ho_{m}$	kg/m³			entfällt	entfällt	entfällt
reaktionsfähiger Flint	W _{rF}	M%			1,9	1,9	1,8
$5 \times W_{0>4} + 1 \times W_{\rho F}$	W _{50+F}	M%			1,9	1,9	1,8

6. Einstufung in Alkaliempfindlichkeitsklassen (Tabellen 1 und 2)

Kornklasse	mm	1/2	2/4	4/8	8/16	16/32
	E I-O	E I-O	E I-O	E I-O	E I-O	E I-O
Opalsandstein	E II-O					
	E III-O					
	E I-OF	E I-OF	E I-OF	E I-OF	E I-OF	E I-OF
Opalsandstein und Flint	E II-OF					
	E III-OF					

Die Lieferkörnung 0/2 ist in E I-O und E I-OF einzustufen.
Die Lieferkörnungen 2/8, 8/16 und 16/32 sind in E I-O und E I-OF einzustufen.

7. Bemerkungen:

Dies ist eine Einzelprüfung. Die maßgebliche Einstufung erfolgt durch die Zertifizierungsstelle.

vom: 14.06.2024

Petrographische Prüfung auf ungeeignete Bestandteile

Datum der Probenahme: 18.04.2024	Datum der Bearbeitung: 09.05.2024	Bearbeiter/in: Bivour
----------------------------------	-----------------------------------	-----------------------

Bestandteile	Eigenschaften			Körnu	ngen in mm			
(Zusammensetzung)	(bes. Merkmale, Farbe, u. a.)	4/8 (aus 2/8)		8/16		16/32		
			Anteile					
		[g]	[M%]	[g]	[M%]	[g]	[M%]	
Einwaage		401,63	100,00	3001,51	100,00	5003,57	100,00	
Σ Unbedenkliche Bestandteile		393,61	98,00	2936,87	97,85	4915,36	98,24	
Σ Flint (Gesamtgehalt)		7,48	1,86	58,31	1,94	88,21	1,76	
A1: Kreide und kreidekrustenführende Flinte, Kieselkalke,		0.00	0.00	0.00	0.00	0.00	0.00	
Kieselkreiden sowie Opalsandstein		0,00	0,00	0,00	0,00	0,00	0,00	
A2: poröse Kalk- und Mergelsteine		0,00	0,00	0,00	0,00	0,00	0,00	
A3: Sedimentgesteine (Ton-, Schluff- und Sandsteine) mit	8/16: gering verfest. Sst. (1 Stk.)							
lockerer Kornbindung sowie quellfähige anorganische		0,00	0,00	4,26	0,14	0,00	0,00	
Bestandteile								
Σ A ungeeignete Bestandteile		0.00	0.00	4.00	0.44	0.00	0.00	
(< 0,50 M%)		0,00	0,00	4,26	0,14	0,00	0,00	
B: im alkalischen Milieu lösliche anorganische Bestandteile	2/8: oxid. Sst. (1 Stk.)							
und gering verfestigte oxidische Eisenverbindungen	8/16: oxid. Sst. (1 Stk.)	0,54	0,13	2,07	0,07	0,00	0,00	
(≤ 0,25 M%)								
C: quellfähige organische Bestandteile		0.00	0.00	0.00	0.00	0.00	0.00	
(≤ 0,02 M%)		0,00	0,00	0,00	0,00	0,00	0,00	

kursiv: Grenzwert

Allgemeine Angaben (Freiwillige Güteüberwachung)

1	Konformitätsnachweis	
1.1	Konformitätsnachweisverfahren	2+
1.2	Codenummer des Zertifizierers / Überwachers (notified body)	0838
1.3	Name der zertifizierenden Institution	BÜV Niedersachsen/Bremen Güteüberwachung KSSR
1.4	Ist die WPK zertifiziert / überwacht?	zertifiziert
1.5	Nr. des WPK-Zertifikates	0838-CPR-22014
1.6	Erstausstellungsdatum des WPK-Zertifikates	01.01.2023
1.7	WPK-Beauftragter	Fr. Nowakowski
2	Prüfung	
2.1	Verantwortlicher / Durchführender der WPK (intern)	Hr. Arnold / Hr. Kranich
2.2	Ort / Adresse des Labors für die WPK (intern)	Werk Rieder
2.3	Wurde die Probenahme entsprechend den Anforderungen der DIN EN 933-2 durchgeführt?	ja
2.4	Werden alle verlangten Prüfungen der WPK (intern) im erforderlichen Prüfrhythmus durchgeführt?	ja
2.5	Werden die geforderten Aufzeichnungen der "WPK" ordnungsgemäß geführt?	ja
3	Lieferschein	
3.1	Enthält der Lieferschein alle verlangten Angaben?	ja
3.2	Enthält der Lieferschein alle notwendigen Zeichen?	ja
4	Herstellwerk	
4.1	Entspricht die Lagerung der Gesteinskörnungen den Anforderungen?	ja
4.2	Werden die Silos, Halden, Boxen etc. gekennzeichnet?	ja

Beurteilung

Die untersuchten Gesteinskörnungen entsprechen in den geprüften Eigenschaften, unter Berücksichtigung der länderspezifischen Vorschriften, den Anforderungen der TL Gestein-StB, Anhang F (Anwendungsbereich Asphalt / EN 13043), Anhang G (Anwendungsbereich Beton / EN 12620) und Anhang E (Anwendungsbereich SoB / EN 13242).

C. Milnickel, B.Sc. Bau-Ing.

stv. Prüfstellenleitung

Dipl.-Geow. I. Bivour

Fachbereichsleitung Gestein